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A method of oriented manifolds (OMs) /l/ is used to investigate 

nan-linear autonomous control systems. Assuming that the boundary of 
the GM is differentiable, its equation is found and is used to obtain 
the necessary conditions for controllability and estimates of the 
controllable domain when there are restrictions on the control. 

1. A theorem cm the contro~tabi~ity of non-2%war systears. WC! shall study dynamical 
systems described by the following ordinary differential equations: 

t' = f (2. a) (1.1) 

where z is the phase vector and U is the control vector in a time interval T= iD,=) and a 
domain D = {x}, which we assume to be a connected n-dimensional C-manifold (~.>2). The 
permitted controls are bounded measurable functions of time u = u(1) taking values in some set 
Uc:R". We shall also assume that VUE U the function f fr, U) is (r- 1) times con- 
tinuously differentiable on D X u. 

We introduce the following definitions /2/. 

Definition 1. We say that the point X,ED is reachable from the point .x0 ED if 
there exists a trajectory t(t) of system (1.1) such that a (0) =x0 and Z(&) = 51 for some 
t, E T. The set of all points reachable from the point .zczD will be called the positive 
orbit of the point x and denoted by Or+%; the set Or+ K =-U {Oris: sE K) is the positive 
orbit of the set KC D. The sets 

o~-~={~ED: zgOr+y}, O~-K=U{O~-~:GEK} 

are respectively called the negative orbits of the point z and the set X. 

Definition 2. The set Ir:CL) will be called oriented with respect to system (1.1) if 
K = Or+ K or K=OTK. 

The simplest examples of oriented sets are D, 0 and Or+ K(KCD). In systems theory 
there are geometric objects of a similar nature: sem?- permeable surfaces in the theory of 
differential games /3/, lines of single-sided hatchings /4/, locks and traps /5/ in the theory 
of non-linear systems etc. 

Definition 3. Systems (1.1) will be called controllable if VZE D, Or+x =D. 
This definition of controllability is identical with the definition of global control- 

lability generally accepted in the literature. 
Directly from these definitions we have the following theorem. 

Theorem 1. Systems (1.1) is controllable if and only if there is no set N# 0, D that 
is oriented with respect to the system. 

For an arbitrary control system, oriented sets can be made as complicated as desired, 
and hence Theorem 1 is not very useful. A more constructive approach to investigating 
controllability may be obtained using the concept of oriented manifolds (o&Is) /l/. The 
following theorem holds /2/. 

Theorem 2. System (1.1) is controllable if and only if there is no manifold 
that is oriented with respect to system (1.1). 

N#iZi,D 

2. EqwxtSons of oriented manifo‘lds. The condition of orientability means that VUE U 
the velocity vectors f (I, u) at the boundary points are directed into the exterior of the 
manifold if K = Or-K or into the interior of the manifold if K = Or+K. we construct 
tangent planes at points of the boundary, assuming it to be differentiable. We shall 
tinguish between the case of a manifold of complete dimension 

dis- 
(dim N = n) and incomplete 
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dimension (dimN = f< n). 
In the first case the boundary is governed by an equation V(z) = 0 (VE??') and the 

tangent plane to the point by 20 -(X-S, VV(sJ)= 0. The interior of the manifold is given 
by the direction of the vector VV(z,,) and it follows from the orientability that (f(zO, u), 
VV (50)) > 0, VU E u or (f(s,,,U), VV(s,))<O, VUE U. These inequalities can be written as 
equalities, if we introduce a sign-constant function G(r, u) and a continuous function h(.r, 
u) in the domain D X U (omitting the index because of the arbitrariness of the point x,,): 

(f (z, u), VV (.z)) = h (x, m) 1' fs) + G @, a), Vm E u (2.1) 

We will formulate the result obtained in the form of the following theorem. 

Theorem 3. Suppose a sign-constant function G (I, m) and a continuous function h (x, m) 
exist in the domain D XU such that VUE U Eq.(2.1) has a solution v (m) in the 
domain D. Then in the domain D there exists an OM, whose boundary is given by the equation 
Y(s) = 0 1 and system (1.1) is not controllable in the domain D. 

We consider the second case. The boundary of the OFI is given by equations vi fzr) = 0, 
W~ER') and the tangent plane to the point by r0 -(z- zo,VYi(z,,))= 0 (i = I,..., n -5). The 
interior is determined by one of the vectors VVi (~1, say VV, (I); here the equalities 
v, (s) = 0, . . ., v,, (5) = 0 should be satisfied. Then 

(f (% u), VV, (;eo)) > 0, (f (I@, u), vv (r&) = 0 (i = 2, . . .( n - s) 
vu E u or (f h, 4, TV, (34 Q 0, (f (x0, u), vvi (CGJ) = 0 * 

follows from the orientability condition. As in the first case, the last relation can be 
written in the form of a system of equalities, if a sing-constant function G (2. n) and 
continuous functions X{j (3, u) (i, j = 1, 2, . . ., n - s) are introduced in the domain D X U: 

(f(5fU)VvV1fx)) =jl$hij(-29 U)vj (X)+ G*(GU)t VUE U 

G,(x,~)=G(s,u), G,=...=G,_,=O, i==&z,...,n -.-.s 

(2.2) 

This proves the following theorem. 

Theorem 4. Suppose a sign-constant function G(r, U) and continuous functions hi? (X9 
U) (i, j = 1, . . ., n-s) exist in the domain D x U such that Vu= U the system of Eqs.(2.2) 
has solutions VI (4, . . . , V,_,(x) in the domain D. Then there exists an OM on the domain D, 
with boundary given by the equations Vi(z) = 0 (i = *,...,a -5) and system (1.1) is not 
controllable in the domain D. 

Remads. 1". Eqs.(l.l), (2.2) and Theorems 3 and 4 generalize the corresponding equations 
and theorems for invariant manifolds of dynamical systems /6/ and control systems /l/ to the 
case of OMs of control systems. 

2O. Equations similar to (2.1) occur in stability theory when the Lyapunov function 
method is employed. The existence of the Lyapunov function leads to the existence of a 
family of solutions VW= c (e< c<%) for the associated equation, which also ensures the 
stability or instability of the solution under study. A similar situation can also occur in 
a control problem; however this is not compulsory, because the existence of only one solution 
of (2.1) is sufficient for non-controllability, which could occur in a suitably prepared and 
possibly complex system. 

3. The controZtability of nordinear systeme without reetriction on the control. Theorems 
3 and 4 reduce the problem of the controllability of system (1.1) to the study of the existence 
of solutions of systems of differential Eqs.(2.1) or (2.2). The latter problem is made more 
complex by the fact that the given equations contain the controlling parameter U, which in 
the case under consideration can take any values in R". This difficulty can be overcome, 
for example, with the help of a stratagem similar to the one introduced for the basis systems 
of /l/ when constructing invariant manifolds. 

We will confine ourselves to Eqs.(2.1). At each point xCZD we represent the vector 

f (3, u) in the form of a linear combination of vector fields. 

CQ+r (Z, U) >, 0, . . .I ak (Iv =) > OS V(x, u) cz D x R” 

(the coefficients a,(z,u), . . ., Ui (c&U) take both positive and negative values). Then if we 
have a solution v (4 of the system of equations 
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vi (z), VV (2)) = hi (z) V (2) + G< (i = 1, * . .( k) 
G, = Gp = . . . = GI = 0, G, = G,(s) (j = 1 + 1, . . ., k) 

(3.2) 

where b(z) (i = 1, . . ., k) are continuous functions in D and G,(z) are sign-constant func- 
tions of the same sign in D, then because of representation (3.1) the function v (5) will 
be a solution of Eq.(2.1) in which the functions 

satisfy the requirements of Theorem 3. This proves the following theorem. 

Theorem 5. Suppose the function f(x,u) in the domain D X R"' can be represented in the 
form (3.1) and functions & (X) (i = 1, . . . . k} continuous in D and sign-constant functions 
G, (5) (j = 1 + 1, . . ., k) exist that are continuous and have the same sign in D such that system 
(3.2) has a solution in the domain D. Then there exists an OM for system (1.1) and system 
(1.1) is non-controllable in the domain D. 

We remark that if the representation (3.1) is possible only for I= n, then an OM (and 
even more so, an invariant manifold) does not exist, which is obvious, because at each point 
motion is possible along all directions. If I= k, i.e. all Gs =0 (i = l,..., k), then the 
solution of system (3.2) determines an invariant manifold with boundary V(X) = 0. (The 
boundary itself is an invariant manifold). To obtain the conditions for its existence it can 
be effective to use /l/ the Jacobi bracket technique. Here the vector fields fi (x) and 
functions h,(X) should be differentiable, for which it is necessary to require the dif- 
ferentiability of the function f(x,u). 

For system (3.2) of general form the existence of a solution of its first subsystem 
(i = 1, . . ., 1) is verified by means of Jacobibrackets, as when finding invariant manifolds /l/. 
In the case of its co-existence the study of the full system (3.2) requires additional con- 
siderations, possibly not using Jacobi brackets. 

Thus for two-dimensional systems oriented manifolds can exist if f Cc. d= %(& u)fz(d+%h 
u) fr (4. cr, (2, 4 > 0. System (3.2) consists of two equations 

(A (z), vv) = n, (2) v, (fi (4. W = 1, (4 v + G (4 (3.3) 

Assuming the function f(z,u) to be differentiable a sufficient number of times, the 
functions R(z). f#(z) are also chosen to be differentiable and linearly independent, i.e. 
det (fl (4, fr (4) # 0 vz = D. Here the first of Eqs.(3.3) always has a solution v=cp(~); the func- 
tion & (2) can be chosen fairly freely, and we take h(z)=O. Then the vector Vcp is 
orthogonal to the vector .fi(z) and its projection along the vector .f,(z) does not vanish, 
because that would mean the collinearity of the vectors fl (2) and f, (4, which would 
contradict the assumption of their linear independence in the domain D. Hence we have the 
representation VCP (2) = BZ (z) h (4 + Pa (4 fn (4 where 6% (2) preserves its sign. 
V@(I) 

When substituting 
into the second Eq.(3.3) we obtain the relation 

~1 (1.) (fi (z), fr (2.)) + B, (2) fn” (4 = b (4 ‘P (4 + G (4 

which is satisfied when & (z) = 0, G (I) = PI (0) Ifs (4 - fi-’ (4 VI (4 3~ (4) h Ml’. 
Because the function G (=) preserves its sign, the conditions of Theorem 5 are 

satisfied, so that with the assumptions that have been made an OM exists and the system is 
non-controllable. 

Example. Consider the system 
I' = -_I + z (U - Uo)', II' = z + II (U - UOP 

(3.4) 
We have 

f (z, u) = (-:j + (u - ua)’ ( ; j 
i.e. a, = i > 0, a, = (U - ~~1% > 0 and det (fi,f,) = --I' -II'. 

Thus system (3.4) is non-controllable in any domain not containing the origin of 
coordinates. 

Consideration of system (3.3) for this case shows that system 0.4) is non-controllable 
in any domain, because system (3.3) has a solution 

v = 2 + II* - c (& = & = 0, G = 2 (9 + g')) 

which, by an appropriate selection of the constant C, defines an OM N in any domain D. 
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4. The ccmtroUability of Ztrww systems with restrictions on the controt. The 
presence of restrictions on the control changes the property of controllability even for 
linear autonomous systems, for which the Kalnan criterion already becomes insufficient, with 
the controllability of the system depending on the nature of the restriction, whether it is 
geometrical, integral or mixed. 

Using Eqs.(2.1) we study the controllability of the autonomous system 

x' = Ax + bu (xER~,uE R',n> 21 (4.1) 

with the geometrical restrictions 
lUl<UO (4.2) 

We will assume that system (4.1) is written in a basis in which the matrix A has real 
Jordan form. We consider its controllability on the assumption that without the restriction 
(4.2) it is controllable, i.e. satisfies the condition 

det (b, Ab, . . ., An-lb) # 0 (4.3) 

We shall use Theorem 3. Eq.(2.1) for system (4.1) has the form 

(As + bu, 7%‘) = hV + G (4.4) 

We will consider three cases according to the eigenvalues of the matrix A. 
We first suppose that among the eigenvalues there is a number hi = a +i@ with non-zero 

real part. Then the matrix A and vectors x, b can be represented in the form AT=(ArT, A,=), 
xT =(Q, SST), bT = (blT, b,T), where x1, b, E R2 and 

Eqs.(4.4) are satisfied if we take 

V = -ca + z12, h = 0, G---2cq2 + 2u (b,, 51) 

Using restriction (4.2) and the condition a+0 we conclude that the function C is 
sign-constant in the domain D x U, D = (2: jclB > Y*), U = {IL: 1 u 1 ( up) for V* 2 u,,Bb,zla2. 
According to Theorem 3 system (4.1) under restrictions (4.2) is non-controllable in the 
domain D, which means, also in Rrn. The OM will be the domain bounded by the elliptic cylinder 
x12 = c with appropriate c. 

Suppose next that amongst the eigenvalues there is .a real number h,#O. As in the 
preceding case, we select a matrix A, = (h,,O, . . ..,O) and vectors z;,b,E Rx. Eq.(4.4) is 
satisfied if we put V = --c +x1, h. = 0, G =&x, + ub,. The function G is sign-constant in the 
domain D x U, D = (x: I zI I > Y}, U = {u: I IL I < ~0). f or Y >udI h,b, I. By Theorem 3 system 
(4.1) with restrictions (4.2) is non-controllable in the domain D, which means that in Rn 
the OMs will be domains bounded by planes z, = c by the appropriate choices of C. 

It remains to consider the case when all eigenvalues are purely imaginary or zero. Here 
the functions G found in the preceding cases are no longer sign-constant and the investigation 
of Eq.(4.4) is much more difficult. Furthermore, it turns out that system (4.1) in this case 
is controllable in Ii”, which means that a solution of Eq.(4.4) with the properties specified 
by Theorem 3 does not exist. 

To prove the controllability we shall show the existence of a control solving the specific 
two-point problem 2 (&f = 20. 2 (11) = z, for system (4.1) . We require that the trajectories lie 
in a sphere of radius R = 3*ar (iisii.ii%i!!, Then using the satisfaction of conditions (4.3) 
one can introduce a new control u== cTs+ =. such that for I*#< R the condition Il~~<vo is 
satisfied, where O<%<% and all the eigenvalues of the matrix A -hT are purely 
imaginary, aj=iwj, (the 01 being incommensurable, j= 1, . . ..k) for even ?&= 2k, while for 
odd n = 2k+ 1 we have hj = iwj(oj incommensurable, i = 1, . ., k), and &,k+l = 0. 

Instead of system (4.1) with restrictions (4.2) we will consider the system I' = A+ f bv 
(AO=A- Q) with restrictions /u[~Q,, assuming that the matrix A, has real Jordan form. 

We will first consider the case of even n= 2k. Because for IJ~O the solution lies on 
a sphere, the required control is constructed in two stages. In the first stage we construct 
a control which takes the system from the initial sphere a? = X0" to the final sphere .I?= zXp 
at some time f*. This is always possible: because V=Z* we have v’= 2zTbut SO that y'>U 
when v = u0 sign (zTb) and V'g 0 when u = -uO sign (z'b). A control chosen in this way ensures 
that the trajectory is contained in the sphere /[z/J< max (IIzojJ711sli). After this, with zero 
control we arrive at some finite time tl at the final point 21 if all the quantities &lo, 
are commensurate, or in a neighbourhood of z1 that can be chosen to be as small as desired if 
the Arpr/ei are incommensurable. Here he,= cpl(t,)-rp, (t,) are the increments in polar angles 
of the points rl,z(ttl in the planes corresponding to eigenvalues $- In the latter case, by 
a theorem from f7/ V&)0 there exists a control 2, satisfying the restriction {vl<e taking 
the system from the initial point 5 it*) to any point of some neighbourhood of the point 
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~(t,)expA, (t - t,), which includes the point ~1. This proves the existence of control in the 
given case. 

For odd n, unlike in the preceding case, in the first stage it is necessary to arrive 
at time t, not just at the final sphere ~*=-;~a, but also to ensure that the condition 
++I (t.) = ~~~~~~~ is satisfied. To do this one must combine the control found in the preceding 

case with zero control, choosing the switch-over times in a corresponding manner. In the 
final stage the proof is as in the preceding case. 

We have thus proved the following theorem. 

Theorem 6. System (4.1) is controllable in R" with restriction (4.2) only in the case 
when condition (4.3) is satisfied and all eigenvalues of the matrix A are purely imaginary 
(which includes zero eigenvalues), and the quantity UC, can be taken to be as small as 
required. 

5. Estinwxtes of the contPottabZe danain. It was shown above that a controllable linear 
system can become non-controllable iin the entire space) when geometric restrictions are 
imposed on the control, OWs constructed for cases of non-controllability are separated from 
zero, and the system will be controllable in some domain containing the origin of coordinates 
because it is known /7/ that the domain of controllability contains some neighbourhood of 
the origin of coordinates. From this there arises the problem of describing the domain of 
controllability, the solution of which is however very difficult even for two-dimensional 

;IYstems I=/* 
The analysis of oriented manifolds developed above allows one to find a radius 

.I such that for 8>& system (4.1) is non-controllable on the sphere ilzi] < R for 1 u ] Q &. 
This characteristic is useful for describing domains of controllability and can be used in 
a quantitative estimate of the quality of the control system. 

We will compute & for system (4.1) with restriction (4.2). Suppose the matrix A has 
k real eigenvalues 5, (including 
%-) 

k+ positive eigenvalues h,+ and k- negative eigenvalues 
and m complex eigenvalues XJ = a, + #j (including m+ with positive real parts cc,' 

and m- with negative real parts aj-). The coordinates corresponding to the first rows of 
the associated real Jordan cells will be denoted by zj* 
coordinates of the vector b by pji, and rj*$ 6j*. 

and Ej*, no*, and the corresponding 
The boundaries of the oriented manifolds 

are obtained by setting the following functions to zero: 

v 

vg!= - c2 + ,zl xf2, 

V$=c2+x~-xjT (v,j=l,..., k*, p=i ,..., m*) 

with the condition that the functions 

are sign-constant. (In the quoted formulae one uses only the upper signs or the lower signs). 
From the sign-constancy condition on the functions G& and 
functions GVS on the manifolds V$ = 0 we obtain 

Gzt over all space, and the 

(where & is the unit sphere with centre at the origin of coordinates). 

6. cmtro~ oftheangutarmotion of a rigidbody. It is well-known that the angular 
motion of a rigid body moving inertially can be controlled by an "obliquely-positioned" 
reactive thruster /l, 8/. We will consider the properties of these controllable motions when 
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there is a restriction on the control. We will linearize the equations of motion in a 
neighbourhood of uniform motion about the third principal axis with zero control: 

Here 017 02 and o3 are perturbations of the projections af the angular velocity 
vector onto the principal axes, o = (a,,a,, a,) is a vector characterizing the direction of 
the torque of the reactive fexce, u is the magnitude of the reactive force, o is the angular 
velocity of the uniform rotation, and At, 4, A, are the principal moments of inertia of the 
body. 

We will investigate the controllability of system (6.1) with the restriction iu f,<u, 
on the control and the assumption that when there are no restrictions system (6.11 is con- 
trollable, i.e. 

Depending on the roots A,, h and %a of the characteristic equation 

det (A - h?c) = 4. (h* - ai&& = 0 

we consider two cases: 
1) rotation around the smaller and larger axis of the inertial ellipsoid 

2) rotation around the middle axis of the 

&,= -&-C/r= h, = 0 

inertial ellipsoid (s,%>o): 

-_r---- - 

According to Theorem 6 system (6.1) is controllable in the first case in all space for 
any value of u,. 

In the second case system (6.1) is non-controllable for I u I < uo in all space, and for 
estimates of the domain of controllability we use formulae (5.1) I first putting system (6.1) 
into Jordan form. 

From formulae (5.1) we find 

Ro = min (RI+, RI-, R,,+, Rii-) 

R,* = u. I ai v< & a,lf/a, I /(2a,a+), R,$ = R,* + R,T/3 

Finally we have 

Formulae (6.2) cab Be used, 
a rigid body and to optimize its 
quality criterion. For a fuller 
other than uniform rotatian. 

RO = min f&+, R,-) @*2) 

for example, to estimate the quality of a control system for 
parameters @i, % aaf if one takes x = max& to be the 
estimate it is also necessary to consider forms of motion 
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